If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-10z-8=0
a = 3; b = -10; c = -8;
Δ = b2-4ac
Δ = -102-4·3·(-8)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-14}{2*3}=\frac{-4}{6} =-2/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+14}{2*3}=\frac{24}{6} =4 $
| -152=4(4-7x) | | a/2-2=-7 | | -4(x-3)=60 | | -17=-2m-1-6m | | 1-6n=-5-7n | | 90+79+x=180 | | 3x^2-18x-216=0 | | 3x^2-18x=216 | | (2m+5)^2=49 | | 45+46+x=180 | | 7=11z+7 | | (x+9)^2=4^2 | | 2x+3=232 | | 69+27+x=180 | | 96+49+x=180 | | -6(3-3a)-8(a+5)=32 | | 3x(x-10)-168=0 | | -2(-3x+6)=-42 | | 3c+3c=32 | | 5x^2+55x-210=0 | | 9x+77=6x+104 | | n-22=-26 | | 6=1/2=w | | 2*x(3)=232 | | 18t-1=1 | | 2x*3=232 | | 124+90=120+n | | 100x+50=87x+466 | | 3=6+n/9 | | 6/5=-6k | | 1/2+x=-3/5 | | 0.09x+0.01=0.5(x-12) |